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Since chikungunya virus emerged in the Caribbean region
in late 2013, ~45 countries have experienced chikungunya
outbreaks. We described and quantified the spatial and
temporal events after the introduction and propagation of
chikungunya into an immunologically naive population from
the urban north-central region of Venezuela during 2014.
The epidemic curve (n = 810 cases) unraveled within 5
months with a basic reproductive number of 3.7 and a radial
spread traveled distance of 9.4 km at a mean velocity of
82.9 m/day. The highest disease diffusion speed occurred
during the first 90 days, and space and space—time model-
ing suggest the epidemic followed a particular geographic
pathway with spatiotemporal aggregation. The directionality
and heterogeneity of transmission during the first introduc-
tion of chikungunya indicated existence of areas of diffusion
and elevated risk for disease and highlight the importance
of epidemic preparedness. This information will help in
managing future threats of new or reemerging arboviruses.

hikungunya, a reemerging mosquitoborne viral in-

fection, is responsible for one of the most explosive
epidemics in the Western Hemisphere in recent years.
Since its introduction in the Caribbean region at the end
of 2013, chikungunya virus (CHIKV) rapidly expanded
within a year to most countries of South, Central, and
North America (/,2). CHIKV belongs to the genus Alpha-
virus (Togaviridae), first isolated in Tanzania during 1952
(3). Its sylvatic (enzootic) cycle in Africa involves nonhu-
man primates; the virus is transmitted by an ample range
of forest-dwelling Aedes spp. mosquitoes (4). Within the
urban (human) cycle across Asia, the Indian Ocean, and
the Americas, CHIKV is transmitted by Aedes aegypti
and Ae. albopictus mosquitoes (5—7). Most (72%—-93%)
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infected persons develop symptomatic disease charac-
terized by fever, rash, and incapacitating arthralgia, pro-
gressing in 42%—60% of patients to chronic, long-lasting
relapsing or lingering rheumatic disease (8,9). The lack of
population immunity to CHIKV in the Americas alongside
the ubiquitous occurrence of competent Ae. aegypti mos-
quitoes and human mobility may explain the rapid expan-
sion of CHIKYV across the Americas; cases doubled each
month during the epidemic exponential phase (/0,11). At
the end of 2014, >1 million suspected and confirmed cas-
es, including severe cases and deaths, were reported in 45
countries and territories; this figure reached almost 3 mil-
lion cases by mid-2016 (/2). The real number of cases is
most likely higher because of misdiagnosis with dengue
virus (DENV) infection and underreporting.

In Venezuela, the first official imported chikungunya
case was reported in June 2014, and local transmission fol-
lowed soon thereafter. Chikungunya quickly spread, caus-
ing a large national epidemic affecting the most populated
urban areas of northern Venezuela, where DENV trans-
mission is high. Given the paucity of official national data,
epidemiologic inference was used to estimate the number
of cases. Although nationally the disease attack rate was
estimated at 6.9%—13.8% (/3), the observed attack rate
in populated urban areas was =40%-50%, comparable to
those reported in the Dominican Republic (/4) and Asia
and higher than those in La Reunion (15,76).

The rapid expansion and worldwide spread in the last
decade make CHIKV one of the most public health-rel-
evant arboviruses (/7). With the reemergence of other
arboviruses, new large-scale outbreaks in the near future
seem likely (/8). Clarifying and quantifying the introduc-
tion and propagation range in space and time of the initial
epidemic wave of chikungunya within the complex urban
settings of Latin America will shed light on arboviral trans-
mission dynamics and help in managing future threats of
new or emerging arboviruses operating under similar epi-
demiologic dynamics. We characterized the epidemic wave
of chikungunya in a region highly affected by the 2014
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outbreak in Venezuela. To this end, we described the spa-
tial progression of the epidemic using geographic informa-
tion systems (GIS), quantified the global geographic path
that CHIK'V most likely followed during the first 6 months
of the epidemic by fitting a polynomial regression model
(trend surface analysis), determined the general direction
and speed of the propagation wave of the disease, and
identified the local space-time disease clusters through
spatial statistics.

Materials and Methods

Study Area

Carabobo State is situated in the north-central region of
Venezuela (Figure 1). It is one of the most densely popu-
lated regions (79).

Study Design and Data Collection

To determine the spatiotemporal spread of the 2014 chikun-
gunya epidemic at local and global scales, we conducted a
retrospective study of patient and epidemiologic data col-
lected through the national Notifiable Diseases Surveillance
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System (NDSS). Suspected chikungunya was diagnosed in
810 persons of all ages by their physicians; these patients
were reported through the NDSS to the epidemiologic de-
partment of the Regional Ministry of Health of Carabobo
State. Patients suspected of having chikungunya were
those with fever of sudden onset, rash, and joint pain with
or without other influenza-like symptoms. Patients who at-
tended public or private healthcare centers across Carabobo
State municipalities were included in this study.

Patient data were obtained for June 10-December 3,
2014 (epidemiologic weeks 22-49), coinciding with the
Venezuela chikungunya outbreak. Data corresponding to the
first visit of the patients to a healthcare center were included
and comprised patient address, clinical manifestations, and
epidemiologic risk factors. This information was entered in
a database, checked for consistency, and analyzed anony-
mously. We defined the index case as the first chikungunya
patient reported by the NDSS within this region.

Temporal Dynamics of CHIKV Spread
We described the growth rate of the disease by plotting
the cumulative cases per epidemiologic week and fitted a

10 20

Figure 1. Area of study on the spatial dynamics of chikungunya virus, Carabobo state, Venezuela, 2014. Blue shading indicates

2014 population by parish. Most persons live in the capital city of Valencia (892,530 inhabitants); within the metropolitan area, poorer
settlements are located mainly in the southern area, and the most organized and urbanized medium- and high-level neighborhoods are
situated toward the north-central part. Insets indicate location of Carabobo state in Venezuela and Venezuela in South America.
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logistic curve after examining the shape of the epidemio-
logic curve (Appendix Figure 1, https://wwwnc.cdc.gov/
ElD/article/25/4/17-2121-Appl.pdf). We estimated the
average number of secondary cases resulting from a pri-
mary case in a completely susceptible population— the ep-
idemic’s basic reproductive number (R )—from the initial
phase of the epidemic using the exponential growth method
(20) and then calculated a real-time estimate of R, called
R, (21,22), to explore the time-varying transmissibility of
chikungunya (Appendix).

Spatiotemporal Trend of the Epidemic

Wave of Chikungunya

We georeferenced the address of every patient into a GIS so
that the X (east-west) and Y, (north-south) coordinates of
each chikungunya case were derived. We drew the weekly
spatial progression of the 810 reported cases with respect
to the index case in a map. To assess the spreading pat-
tern before the epidemic reached the steady (plateau) state
(Figure 2), we selected cases that occurred 0—-125 days (up
to epidemiologic week 40) after the index case. Within
this time range, the case notification rate maintained a sus-
tained growth.

To explore the general spatial trend of chikungunya
cases (or the movement of the epidemic wave of infection)
across the study area, we developed a map of time of dis-
ease spread using trend surface analysis, a global surface
fitting method (Appendix). We created the variable time (in
days) using the symptom onset date from the index case as
the baseline date across the 810 case localities; that is, time
(X, Y)). Thus, time is considered the number of days elapsed
between the appearance of a case in a specific locality Zi and
the index case. We used results of the trend surface analysis
to generate a contour map or smoothed surface; each contour
line represented a specific predicted time period in this ur-
ban landscape setting since the initial invasion of the virus.
The local rate and direction of the spread of infection was
estimated as the directional derivative at each case using the
trend surface analysis fitted model to obtain local vectors that
depicted the direction and speed (inverse of the slope along
the direction of the movement) of infection propagation from
each locality in X and Y directions. In addition, we used krig-
ing, a local geostatistical interpolation method, to generate an
estimated continuous surface from the scattered set of points
(i.e., time) with z value to better capture the local spatial vari-
ation of chikungunya spread across the urban landscape (23).
We used ordinary kriging to predict values of the time period
since the initial invasion of the virus. We selected the model
with the best fit out of 3 theoretical variogram models tested
by cross-validation to predict the values at unmeasured loca-
tions and their associated errors (Appendix).

We also obtained an empirical basic baseline rate
of disease spread to quantify the observed velocity for
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Figure 2. Reported chikungunya cases during epidemic,
Carabobo state, Venezuela, 2014. Black line with open black dots
indicates chikungunya cases; red line with open red diamonds,
cumulative cases.

each case z, directly from the data by measuring the lin-
ear distance (meters) of case Z, to the index case and then
dividing it by the time in days that elapsed since the index
case was reported. We assessed differences between ve-
locities by using the Kruskal-Wallis test, a nonparametric
method to test differences between groups when these are
nonnormally distributed (24).

Finally, to identify general space—time clusters of chi-
kungunya transmission, we performed a Knox analysis
(25), and to identify interactions at specific temporal in-
tervals, we used the incremental Knox test (IKT) (26). For
general space—time clusters we selected critical values of
100 m (distance) and 3 weeks (time) after multiple distance
and time windows testing (Appendix Table 2). Our selec-
tion was based on the Aedes mosquito flight range and the
maximum duration of the intrinsic and extrinsic incubation
periods of the virus, respectively (27,28). Upon identifica-
tion of the cluster, we calculated the distance between the
first case of a cluster (C)) and the cases within the cluster
Z, considering this distance as a measure of virus disease
spread. For interactions at specific temporal intervals, we
used the IKT in an exploratory mode over the time inter-
vals from 1 day to 31 days and space distances from 25
m to 500 m (Appendix). We conducted spatial analyses
using R software (The R-Development Core Team, http://
www.r-project.org) and ArcGIS version 10.3 (ESRI Cor-
poration, https://www.esri.com) using the Spatial Analyst
Toolbox and generated maps with Quantum GIS 2.14.3 Es-
sen (QGIS Development Team GNU—General Public Li-
cense, https://www.qgis.org) software). Space-time (Knox)
analysis was performed using ClusterSeer 2.0 (Terraseer,
https://www.biomedware.com/software/clusterseer).

Ethics Statement

Data were analyzed anonymously, and individuals were
coded along with the information of address with a unique
numeric identifier. The epidemiologic department of the
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Regional Ministry of Health of Carabobo State approved
the study.

Results

Temporal Dynamics of CHIKV Spread
A total of 810 suspected chikungunya cases were reported
in Carabobo State in 2014 during epidemiologic weeks
22-49 (28 weeks), representing the first introduction and
propagation of the virus in the north-central region of Ven-
ezuela. The index case was an imported case (in a returning
traveler from the Dominican Republic) in epidemiologic
week 22 in the north-central zone of the capital city (Valen-
cia) (Figure 1). The index case was followed by the other
imported cases and soon after by locally transmitted cases.
The cumulative cases during epidemiologic weeks
22-49 followed a logistic growth (Appendix Figure 1;
R =0.99, n = 810; p<0.05). The reported cases displayed
a characteristic epidemic curve with a single wave and
peaked at epidemiologic week 33, eleven weeks after
the index case (Figure 2). The epidemic takeoff occurred
at epidemiologic week 31 (i.e., 9 weeks after the index
case). The total duration of the outbreak was =28 weeks;
however, the main epidemic curve lasted =3 months,
from epidemiologic week 30 until epidemiologic weeks
43-44. The initial global growth rate of the epidemic
was 0.53 cases per week, and R, = 3.7 (95% CI 2.78-
4.99) secondary chikungunya cases per primary case
(epidemiologic weeks 22-31). We obtained comparable
results when we calculated the instantaneous reproductive
number (R, = 4.5, 95% CI 2.4-7.1) during the epidemic

Caribbean Sea

Spatial Dynamics of Chikungunya Virus, Venezuela

peak. Beginning with epidemiologic week 34, R, values
fell below 1, and they gradually decreased from there
onward (Appendix Figure 2).

Spatiotemporal Distribution of the

Chikungunya Epidemic

The chikungunya outbreak progressed chronologically
and spatially through Carabobo State (Figure 3; Video,
https://wwwnc.cdc.gov/EID/article/25/4/17-2121-V 1.
htm). The cases reported in Valencia during the first 6
weeks were located in the central area of the city close to
the index case, whereas a few cases were reported in the
southwestern part of Valencia and in other small urban
towns of Carabobo (Figure 3, panel A). The first autoch-
thonous case occurred during this interval in the south-
central area of Valencia, relatively close to the index case
(Figure 3, panel A). During epidemiologic weeks 28-31,
the number of reported cases increased in parishes around
the autochthonous case (Figure 3, panel B). During epide-
miologic weeks 32-35, the number of cases exploded ex-
ponentially, and the disease spread rapidly throughout the
capital city and surrounding smaller urban centers (Figure
3, panel C). New cases were actively reported during 8
continuous weeks (Figure 3, panels C, D) to later decrease
from epidemiologic week 40 to epidemiologic week 49
(Figure 3, panels E, F). The epidemic progressed in 2
directions (movement axes) in the region: a north—south
direction and a northeastern and southwestern direction.
Both shifts consistently overlapped with the populated
centers of the region and the main traffic routes (motor-
ways and main roads).

> {
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Figure 3. Spatial and temporal spread of chikungunya epidemic, Carabobo state, Venezuela, June—-December 2014. Time is presented
at epidemiologic week intervals as follows: A) weeks 22—-27; B) weeks 28-31; C) weeks 32-35; D) weeks 36-39; E) weeks 40—45;

F) weeks 46-49. Red circles indicate the appearance of new cases for the given interval; blue indicates the cumulative cases in prior
intervals. Light yellow lines depict the road system of the area of study; light gray areas represent the populated areas (urban centers)
within the parishes. Yellow star indicates index case; green diamond indicates first autochthonous case.
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Figure 4, panel A, depicts the general direction and
propagating wave of disease derived from the trend surface
analysis. Contour lines that are far apart indicate that the
epidemic diffused quickly through the area, whereas lines
that are closer together show a slower progression. The di-
rection of diffusion is also given by the edges of the contour
lines. The model located the wave of disease dispersal in
the central part of the region and included the index case
and autochthonous case. The bulk of the outbreak unfold-
ed within 90 days, spreading mainly to the southwestern
and northern parts of the capital city. During this time, the
maximum radial distance traveled was 9.4 km. A slower
diffusion was predicted toward the northeast and southern

A .

Time, d
53-62 63-71 72-79 80-88 89-97 98-105 106-115
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part of the region. However, the limitation of the method
resulting from edge effects determines that the best area for
prediction is the central one.

To visualize the local diffusion of CHIKV at each
location, we drew the vector field across the modeled surface
(Figure 4, panel A). Overall, the model confirms the pre-
vious observation of a general trend or corridor of diffu-
sion of chikungunya cases southwest and northeast of the
capital city within the first 80 days. After 90 days, the
epidemic wave varied its direction and magnitude by loca-
tion. Although agreeing with the general pattern shown by
the trend surface analysis, the resulting kriging Gaussian
(selected) model interpolation surface (Figure 4, panel B;

Figure 4. Global and local
predicted spreading patterns of
chikungunya virus, Carabobo
state, Venezuela, 2014. A)
Contour map (global scale) of
the predicted spreading waves
and the velocity vector arrows of
each case of chikungunya. The
contour map and contour lines

in black (traveling waves) were
estimated by the best-fit trend
surface analysis (third order
polynomial model) of time (days)
to the first reported case or index
case of chikungunya across the
landscape. White lines correspond
to the road system of the area.
The background gradient of
color shows the probability of
chikungunya virus diffusion
according to the prediction of the
model: the darker the red, the
higher the probability of spread.

Each vector (blue outlined arrows)
represents the instantaneous
velocity derived from the partial,
differential equations from the
trend surface analysis model
(Appendix, https://wwwnc.cdc.gov/
eid/article/25/4/17-2121-App1.
pdf). B) Spatial prediction map

for the ordinary kriging (Gaussian
model) interpolation of the time
(each color represents a different
number of days) of chikungunya
spread. Contour lines from trend
surface analysis depicted in

the kriging surface are shown
only for comparison purposes.
Yellow star indicates index case;
green diamond indicates first
autochthonous case.
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Appendix Table 1) predicts a more heterogeneous spread
pattern of chikungunya cases by matching the patchy (un-
even population density) distribution of human neighbor-
hoods and the road network. In addition, kriging identi-
fied a faster propagation of the epidemiologic wave at the
southwestern and eastern areas where the model showed its
best fit (Appendix Figure 3, panel A) and a slower move-
ment to the northeastern and south-central areas than esti-
mated by the trend surface analysis.

We calculated the virus diffusion velocities for each par-
ish through the empirical method (Table). The mean velocity
of disease spread across the state was 82.9 m + 53.6 m/day,
and overall, the pattern of diffusion of CHIKV was highest in
the suburban and rural settlements near the capital city. How-
ever, the observed velocities varied significantly by location
(n = 735; p<0.05). For instance, the parishes at the center of
the capital (San Jose, Catedral, Candelaria, San Blas, Santa
Rosa) showed velocities <60 m/day, whereas in the remain-
ing localities, including both rural and suburban towns, the
speed was >60 m/day. The maximum velocity of the out-
break was 483 m/day, measured south of the capital.

Spatiotemporal Clusters of the Epidemic Wave

Results after multiple space and time parameters testing
showed that core clusters remained similar through time
(Appendix Figure 4), and the relative risk (RR) within the
clusters remained important (RR >1.5) up to 3 weeks (Ap-
pendix Figure 5). Using selected critical values, we iden-
tified 75 general space—time clusters using Knox analysis
(Appendix Table 3; Appendix Figure 6, panel A). These
clusters included at least 2 space-time-linked cases and a
total of 205 (27.9%) cases that showed a space—time rela-
tion. The major accumulation of clusters occurred in the

Spatial Dynamics of Chikungunya Virus, Venezuela

southern and southwestern parts of the capital. The earliest
cluster (cluster 7; Figure 5) was located in the west-central
parts of the capital and comprised 3 cases, including the
index case. From this cluster, the average distance from
each case to the index case was 32 m, and the cases were
reported within 25 days after the index case. In addition, the
major cluster (cluster 57, 12 cases) was located in the west-
central area of the capital 4 km from the index case (Figure
5). The cases belonging to this cluster occurred within 9
days (1.3 cases per day); these cases occurred an average of
70 days (range 69—77 days) after the index case (Appendix
Table 3). The median time between the first notified case
(symptom onset) and the last case within a cluster was 9
days (range 3—18 days). Furthermore, the average distance
between cases within the clusters was 75.2 m + 25.6 m
(range 110.6-39.2 m) (Appendix Table 4). Furthermore,
the baseline velocity in Carabobo State was similar to the
average velocity within the clusters (69.9 + 34.4 m/day).
These results agree with IKT findings, where the temporal
intervals with the strongest spatial clustering and RR
occurred at 1-7 days and 25-150 m (Appendix Figures 7, 8).

Discussion

We described and quantified the spatial and temporal events
that followed the introduction and explosive propagation of
CHIKYV into an immunologically naive population living in
the urban north-central region of Venezuela during 2014.
The main epidemic curve developed within 5 months,
with a maximum value of the estimate of R = 3.7 by
epidemiologic week 12. The speed of disease diffusion
was greatest during the first 90 days, and the spatial spread
was heterogeneous following mostly a southwest spatial
corridor at a variable local rate of diffusion across the

Table. Average velocities of chikungunya virus spread across Carabobo state, Venezuela, 2014

Velocity, m/day

Civil parish No. cases Mean (95% CI) SD Minimum Maximum Location*
Candelaria 29 39.4 (33.5-45.2) 15.3 17 96 Central
Catedral 11 28.8 (22.4-35.3) 9.5 15 50 Central
Ciudad Alianza 1 146.7 Not applicable 147 147 East-southeast
El Socorro 6 47.2 (13.5-80.9) 321 25 98 South-southwest
Guacarat 4 206.2 (-35.1 to 447.6) 151.7 98 430 East-northeast
Guiguet 5 256.7 (151.7-361.8) 84.6 163 344 Southeast
Independenciat 6 206.7 (138.8-274.5) 64.7 138 310 South-southwest
Los Guayos 42 115.1 (105.3-124.9) 314 52 176 East-southeast
Miguel Pefia 228 80.6 (75.3-86.0) 40.6 21 483 South
Naguanagua 41 85.9 (77.3-94.6) 27.3 47 174 North
Rafael Urdaneta 84 87.2 (79.5-94.8) 35.3 23 186 Southeast
San Blas 27 43.6 (39.0-48.3) 11.7 21 62 Central

San Diego 35 73.3 (63.5-83.1) 285 41 150 North-northeast
San Jose 68 27.6 (21.3-34.0) 26.2 0 202 North-central
Santa Rosa 70 58.4 (55.9-60.9) 10.4 35 97 Central
Tacariguat 6 197.0 (147.7-246.3) 47.0 149 259 South-southeast
Tocuyitot 70 149.8 (137.2-162.4) 52.8 61 365 Southwest
Yaguat 2 111.0 (3.4 to 225.4) 12.7 102 120 East-northeast
Total 735 82.9 (79.0-86.7) 53.6 0 483 Entire state

*Location refers to relative locations from the center of the capital city, Valencia.

tSuburban settlements.
FRural settlements.
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Figure 5. Geographic
distribution and significant
space—time clustering of
reported chikungunya cases
identified in a section of

the capital city, Valencia
(metropolitan area), Carabobo
state, Venezuela, June—
December 2014. Red dots
denote case location; black
outlined circles identify

a significant space—time
cluster; yellow lines show the
interaction between cases
(time—space link). The analysis
was performed using 100 m as
clustering distance and 3 weeks
as time window. Significance
level for local clustering
detection was p<0.05. Inset
depicts the geographic location
of Carabobo; black rectangle
indicates highlighted study area.

landscape. The radial spread traveled distance was 9.4 km at
a mean velocity of 82.9 m/day. The chikungunya epidemic
showed spatiotemporal aggregation predominantly south
of the capital city, where conditions for human—vector
contact are favorable.

The temporal dynamics here described, R and its
time variable form R suggest high transmissibility of
CHIKYV in this population. These results agree with previ-
ous CHIKYV introductions into naive populations (29-37)
and with the 2014 predicted values for the mid-latitude
countries (R, = 4-7) of the Americas (3/). High values
of R, are also described during first introduction out-
breaks of other Aedes mosquito—borne pathogens, such as
DENV in Chile (R = 27.2) (32) and Zika virus in Brazil
(R, = 1.5-6) (33) and French Polynesia (34). Yet, over-
all R, estimates for dengue are =2-6 (35). The similarity
between the R, of CHIKV, DENV, and Zika virus infec-
tions, all transmitted by the same main vector, the Ae.
aegypti mosquito, strongly suggests that the major factor
driving the exponential increase of the epidemic curve of
arboviruses in naive populations is the transmission ef-
ficiency of the vector.

Spatially, trend surface and kriging analyses showed
a primary wave of disease spread within the first 80 days
in the most likely area of transmission (the southwestern
center of Valencia), whereas a second wave at 90 days
showed the spread of cases toward the southern, western,
and northern areas. This sequential pattern is similar to
that of dengue, where transmission within neighborhoods
most likely is driven by mosquito presence or abundance

678

and/or short-distance movement of viremic hosts (36-38),
whereas long-distance dissemination is probably generated
by human mobility patterns through main roads and motor-
ways. Both movements powerfully affected disease trans-
mission (39,40). Moreover, population density modulates
the chance of vector—host contact (30,417), a fact reflected in
the variation of calculated velocities across different spatial
points and the increased diffusion speed of the epidemic
toward the southernmost populated area.

Although CHIKV was introduced into a naive pop-
ulation in Venezuela, the distribution of cases was not
random but aggregated into 75 significant space—time
clusters, indicating an increased likelihood of vector—host
contact. The area with most clusters, the southern part
of Valencia city, is characterized by densely populated
neighborhoods, lower socioeconomic status, and crowded
living conditions. Similar factors increased the risk for
dengue transmission and clustering (hot spots) in highly
endemic urban areas of Venezuela (42). Poverty and hu-
man behavior fostering potential mosquito breeding sites
(such as storing water at home) were linked with a greater
risk for dengue (42,43). In Venezuela, long-lasting defi-
cits in public services, such as frequent and prolonged in-
terruptions in water supply and electricity, have become
regular in recent years. These inadequacies have obliged
residents to store water, maintaining adequate breeding
conditions for Aedes vectors during the dry season and
throughout the year (44). During the CHIKV epidemic,
the proportion of houses infested with 4edes larvae/pupae
(house index) in Venezuela was >20% (45). The World
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Health Organization recommends a house index <5% for
adequate vector control (46).

In our study, the average distance among cases
within chikungunya clusters was 75 m, which coincid-
ed with the reported flying range of urban Ae. aegypti
females during mark-release-recapture studies (37,47).
Ae. aegypti females have been reported to visit a maxi-
mum of 3 houses in a lifetime while not traveling far
from their breeding sites (48,49). Thus, the distance
traveled by the vector and the number of possible host
encounters with an infected vector cannot explain the
entire disease epidemic spread. Other factors, such as
movement of viremic hosts, a widely distributed vector,
and the lack of herd immunity, may play a role, as for
DENYV, in long-range spread (37).

The lack of entomologic data and estimates of human
movement limit our study. We expect that our estimates
based on epidemiologic records are accurate because chi-
kungunya is symptomatic in >80% of cases. Likewise,
surveillance in Venezuela is based on symptomatic patient
reporting by treating doctors.

Our analysis suggests that the epidemic of chikungun-
ya in Venezuela followed a determined geographic course.
This propagation was potentiated south and southwest of
the study area. Chikungunya is now established in Ven-
ezuela, along with other 4edes mosquito—borne infections,
such as dengue and Zika. However, further epidemics of
these and other reemergent arboviruses (i.e., Mayaro virus
[18,50]) are likely to arise. The insights gained in our study
will help identify and predict future epidemic waves of up-
coming vectorborne infections and quickly define interven-
tion areas and improve outbreak preparedness response in
Venezuela and countries with similar settings.
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Appendix

1. Materials and Methods

1.1. Estimating the Reproductive Number (Ro)

For new emerging infectious diseases, the value of the reproductive number Ro can be
inferred indirectly from the initial epidemic phase by estimating the exponential epidemic growth
rate (r) of new observed infections and relating these parameters to the generation time of
infection (Tg) through the following equation (1).

1

R=Mn

where M is the moment generating function of the disease generation time distribution. A
generation time distribution for chikungunya (CHIK) was defined using a gamma distribution
with a mean of 1.86 weeks and a standard deviation of 0.05 weeks. This includes both the human
and vector infection cycle, by assuming a short mosquito infection lifespan case as reported
before by Boélle et al. (2). For this method we applied the ‘Ro’ package version 1.2—6 developed
by Boélle and Obadia (3) (The R-Development Core Team, http://www.r-project.org).

1.2. Estimating the Effective Reproductive Number (Ry)

Given that the behavior of the force of chikungunya virus (CHIKV) infection through
time was unknown, we calculated a real-time estimate of the basic reproductive number of the
disease, that is the effective reproductive number at time t (Ry) as originally proposed by
Nishiura et al. (4). We then explored the time-varying transmissibility using the Rt series derived

following the methodology of Coelho and Carvalho (5). Hence, Rt was estimated as

Y,
Rt = (t_'”)
Yi

1/n
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where Yt and Y1 are taken to be the number of reported disease cases for a particular
time t and t+1, respectively, while n defines the ratio between the length of the reporting interval
and the mean generation time of the disease. The reporting interval was defined as the duration
of an epidemiologic week (7 days), while the generation time was assumed to be of 2 weeks as
established above. To run the calculation, we applied the R code developed by Coelho and
Carvalho (5) available on the GitHub repository at https://github.com/fccoelho/paperLM1 (The
R-Development Core Team).

1.3. Trend Surface Analysis (TSA) and Local Vectors of Direction and Speed of Infection

TSA methodology consists in fitting, through the method of least squares, a function in a
multiple-regression—like procedure where the response variable, in this case, time, is expressed
as a polynomial function of geographic coordinates (X, Yi) of individual case-points i. e., time = f
(X, Y), a model known as a polynomial regression (6). The order of the polynomial chosen as the
best fit-model or the best polynomial equation will determine the shape of the curve or surface.
Here, we used a third-order polynomial. The variable time (in days) was created using the
symptoms onset date from the index case (IC) as the baseline date across the 810 case localities,
this is, time (X, Yi). Thus, time is considered as the number of days elapsed between the
appearance of a case in a specific locality Zi and the IC. Results of the TSA were used to
generate a contour map or smoothed surface, with each contour line representing a specific
predicted time-period in this urban landscape setting since the initial invasion of the virus.
Finally, we proceeded to estimate the local rate and direction of the spread of infection as the
directional derivative at each case using the TSA fitted model to obtain local vectors that
depicted the direction and speed (inverse of the slope along the direction of the movement) of
infection propagation from each locality in X and Y directions. To this end, we calculated partial
differential equations of time with respect to the X- and Y-coordinates_(JTIME/2X and
JTIME/JY) to obtain local vectors that depicted the direction and speed (inverse of the slope
along the direction of the movement) of infection propagation from each locality in X and Y
direction. The resultant vector for each case will represent, in turn, the overall velocity (in
m/day) and direction of disease spread in each point. The set of vectors were assembled in a
vector field and overlapped over the fitted surface to visualize the pattern of local spread of the
virus along the urban landscape. TSA has been previously used to study pathogen dispersal
processes in space and time (7). Further details of this methodology can be found in Moore (8)
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and Adjemian et al. (9). All the analyses were carried out in R software (The R-Development
Core Team). Maps of time contours and vectors were generated in the ArcGIS software (v.10.3,
ESRI Corporation, Redlands, CA), while general maps were constructed using Quantum GIS
2.14.3 Essen (GNU—General Public License).

1.4. Kriging Interpolation

Kriging is a local interpolation method based on a set of linear regressions that determine
the best combination of weights to interpolate the data points by minimizing the variance as
derived from the spatial covariance in the data (10). The weights are based on the spatial
parameters of a theoretical variogram model such that sampling locations within the spatial range
(close distances) of influence has more weight on the predicted value than the distant locations.
Although kriging and trend surface analysis share some features (i.e., to describe the general
spatial trend), the local interpolation performed by kriging shows an enhanced picture of the
local spatial pattern given that the kriged values are very close to the observed ones. Kriging
analyses (and resulting surface maps) were carried out in the Geostatistics tool from the ArcGIS
software (v.10.3, ESRI Corporation).

1.5. Spatiotemporal Analysis

Even though CHIKV was introduced into a naive population, i.e., the individuals had a
similar immunological likelihood of becoming infected, we wanted to assess the hypothesis of
heterogeneity during disease transmission. In this sense we aimed to find whether aggregation of
cases was present during the CHIK epidemic and if the likelihood of being infected could have
varied depending on space and time distances. Thus, to identify general space-time aggregation
(clusters) of CHIK transmission during the whole epidemic (28 weeks) we performed the Knox
analysis (11) and the incremental Knox test (IKT) proposed by Aldstadt in 2007 (12) to identify

linked transmission events.

1.5.1. Knox Test

This method measures potential space—time interactions by analyzing pairs of cases that
belong to a particular space (distance) and time (days) window. This intuitive method provided
simplicity and promptness (13). Yet, the Knox test requires prior selection of a “critical” time
and distance to classify whether the pairs are close in space, or in time, or both. The test statistic,

X, is the number of pairs of cases that are close in both space and time, and its calculated as
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N i=1
=1

X(s,t) = ZZ aj; ai;

i=1j=1
where s and t being the selected spatial and temporal distances, N is the number of cases,
and the pair of cases are represented by i and j. The exact p value is obtained by the Monte Carlo

procedure.

To select the “critical” value of space and time for our analysis, we performed a series of
repetitions of the Knox method varying the time windows from 1 to 4 weeks (30 days in total)
and the space window ranging from 25 to 200 m. Such analyses were made using the software
ClusterSeer 2.0 (Terraseer, Ann Arbor, MI), which provides the graphical output of the space—
time interactions (10.000 Monte Carlo iterations). The relative risk (RR) of each space and time
window was calculated according to Tran et al. (14); where the RR is considered to be the ratio
between the observed number of pairs of cases found at the space-distance s (in meters) and the
time-distance t (in weeks) and the number of expected pairs of cases found at these same

distances.

1.5.2. Incremental Knox Test

The incremental Knox test (IKT) is similar to other tests of the general hypothesis of
space—time dependence (cases close to one another are much more likely to interact than cases
far apart). However, this technique tests the interaction at specific time intervals rather than the
more general space-time interaction hypothesis. The IKT examines consecutive links in the
chain of transmission by identifying significant clusters in determined space and time intervals.
The test assumes that cases that are nearer together than would be expected in the absence of an

infectious process belong to one similar linked event of transmission (12).

Therefore, the IKT was used to understand in which time interval the clusters of cases of
CHIK belonging to the same chain of transmission occurred helping to understand the linked
transmission processes occurring in certain temporal span. The interval Knox statistic is

formulated as

N i=1

i=1 j=1
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Were s and t are the selected spatial and temporal distances, N is the number of cases, and
the pair of cases are represented by i and j. When the cases i and j are time interval (t) apart

bfj = 1. The Monte Carlo procedure with 10.000 iterations was used to construct reference

distribution for IK (Z values) and the test results are also reported as the epidemiologic notion of
excess of risk (details of this methodology can be found in [12]). over the time intervals from 1
to 31 days, and space distances from 25 to 500 m (selected distances in metes: 25, 50, 75, 100,
125, 150, 175, 200, 300, 400, 500).

2. Results

From surveillance data collected during the months following the introduction of
CHIKYV, the dynamics and timing of the 810 chikungunya reported cases were studied. Appendix
Figure 1 depicts the distribution of cases and cumulative cases along the 28 weeks of the
chikungunya epidemic. Since the detection of the index case (IC) in June of 2014, the north-
central region of Venezuela experienced a continuous reporting of chikungunya cases. During
the first 9 weeks (epidemiologic week [EW] 21-EW 29), a low number of cases were reported.
After EW 30 cases increased rapidly with the exponential growth of the epidemic being observed
between EW 30 and EW 33. The cumulative cases during the EW 22-49 followed a logistic
growth (Appendix Figure 1: R =0.99, n = 810, p < 0.05) reaching the plateau at EW 44 (787

cases). The total growth rate estimated from the logistic fitted curve was 0.53 cases per EW.

2.1. Reproductive Number (Ro) and Effective Reproductive Number (Ry)

To better understand the CHIK transmission dynamic, the basic reproductive number (Ro)
was calculated during the exponential growth of the epidemic, that is during (EW 21-EW 33).
During these first 12 weeks, the maximum value of Ro reached was equal to 3.7 secondary
chikungunya cases per primary case. Furthermore, we estimated the effective reproductive
number (R:) with a reporting interval of 1 week, to assess changes of Ro through time. The curve
of Rt values fluctuates in time as shown in Appendix Figure 2, where the maximum value of R¢
obtained was 4.7 (95% CI 2.4—7.1) occurring during the EW 31 (Appendix Figure 2). Both
measures are similar in principle, and estimate the transmission dynamic of the disease whether
is at the initial phase of the epidemic (Ro) or as an estimate for the whole epidemic (Rt). The
usefulness of Ry is the possibility to estimate its uncertainty (confidence interval) throughout the

epidemic curve. This could be relevant and applicable to other diseases as well. Due to the
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intrinsic variability of the R series, the examination of its credible intervals is essential to

identify periods of sustained transmission (5).

2.2. Kriging Interpolation

We performed an ordinary kriging using 3 anisotropic variogram models. The models
were compared by cross-validation and evaluated in terms of their overall robustness: optimality
and validity of the model to fit the observed data (Appendix Table 1, Appendix Figure 3).
Overall, all the models underestimated the variability in their predictions as is shown by: i)
negative values of the mean standardized errors (MSE), ii) average standard error (ASE) values
lower than the root-mean-squared prediction error (RMSE) values, and iii) standardized root-
mean-squared prediction error (RMSSE) values >1 (Appendix Table 1). This can be due to too
few sampled locations within the spatial range of the study area. However, our best selected
model (Gaussian) was the one that had the MSE nearest to 0, the smallest RMSE, the ASE
nearest to the RMSE, and a RMSSE nearest to 1 (15).

The model was adjusted for the directional spatial trend of our data (anisotropy) in the
semivariogram (10). Maps showing the kriging standard errors of the Gaussian model and of the
other 2 models (for comparison) are presented in Appendix Figure 3. Darker colors in the error
map (Appendix Figure 3) show larger kriging standard errors. Overall, the model failed to
predict in areas out of the main spatial range of the data (where there are fewer and scarcer case
locations) and showed a better prediction toward the south-west and eastern zones of the study
area where a larger number of locations are presented. Indeed, this analysis identified a faster
propagation of the epidemiologic wave at the south-west and eastern areas where the model
showed its better fit (Appendix Figure 3, panel a), and a slower movement to the north-east and

south-center areas.

2.3. Knox Test

The results obtained after the analysis with different critical values of s and t showed that
the core clusters (main clusters) found at week 1 (25-200 m) are the same than those (core
clusters) found at week 2, 3, and 4 (25-200 m), therefore, we have selected to show on Appendix
Figure 4 the graphical output of the critical values of t with a fixed space window of 100 m.

However, the size of the core clusters is susceptible to the change of the space and time
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windows, making the clusters bigger or smaller in terms of number of links (Appendix Table 1),
i.e., from 164 space-time links (1W,100 m) to 220 space-time links (3W,100 m).

Regarding the RR at different space and time windows (Appendix Table 1), the highest

RR were found at the space—time window of 1 week and 25-200 m (RR = between 3 and 2), but
also showing RR >1.5 up to week 3 at the same space windows, while from week 4, values
showed RR <1.5 (Appendix Figure 5). These results provided useful information that allowed to
observe the extent of the interaction of s and t values that shows the highest RR. Hence, RR
values that show an important strength of association are present up to week 3 (21 days) within a
distance that varies between 25 and 150 m. This agrees with previous results obtained by
Vincenti-Gonzalez et al. (16) for Venezuela, where the significant hot spots of high dengue

seroprevalence values were found between 25-100 m, suggesting a focal transmission.

Even though the RR in week 3 decreased along the different distances (average 32 = 7%)
when compared to the RR of week 1, the RR remained higher than one (RR>1) in week 3. Given
the fact that the Knox test results showed the same core clusters along the different t windows
and the RR remained epidemiologically relevant after 3 weeks (general clustering of symptoms
onset date, and RR>1), we used the window of 3 weeks with a distance window of 100 m to
show the global clusters of transmission (Appendix Figure 6). We decided to choose these
distance and time variables based on biologic and ecologic knowledge as explained in the
manuscript and in agreement with other authors (17,18). Where 100 m is the distance referred by
most as the average flight range radius of Aedes spp. and a time window of 3 weeks gives

enough time span for most transmission events to occur (19-21).

2.3.1. General Clusters of Transmission Events During the Epidemic Wave of Chikungunya

Our results (Appendix Table 3) show that the average cluster duration since the
symptoms onset of the first case to the symptoms onset of the last case within the clusters is 12.5
days ranging from 1-67 days. The choosing of 100 m does not preclude the finding of larger
distances between cases within a cluster as the range of distances found was between 8-216 m.
We expect that within clusters >1 chain of transmission will occur each with a duration of ~1

week or less.
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2.4. Incremental Knox Test

The IKT was the second method used to assess the uncertainty of the cluster analysis.
The previous was made employing an exploratory mode where the p-values (Appendix Figure 7)
and the RR (Appendix Figure 8) were examined for a range of values of s and t. The results of
the IKT analysis proved to be useful to identify linked transmission events, and showed that the
temporal intervals with the strongest spatial clustering (belonging to the same chain of
transmission) and RR occurs between 1-7 days suggesting multiple vector feeding within a
gonotrophic cycle (22), with less strong clustering around 12-14 days. High RR results within 1
week are consistent for all tested distances, but values of RR >5 were found to be in distances
between 25 and 150 m (Appendix Figures 7, 8), favoring our previous selection of a space-time
window of 100 m.
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Appendix Table 1. Model parameters of Kriging interpolation*
Model Nugget (C,) Range (a) Partial Sill (C,) MSE RMSE ASE RMSSE
Gaussian 8.88
30.89 -0.014 17.35 14.29 1.18
188.42

Spherical 0.05
48.84 -0.015 17.45 11.04 1.53
117.51

Exponential 2.06
984.85 -0.016 18.13 15.07 1.40
388.71

*ASE, average standard error; MSE, mean standardized error; RMSE, root-mean-square error; RMSSE, root-mean-square standardized error.
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Appendix Table 2. Knox test with alternative definitions of spatial and temporal proximity*

Time, wk Distance, m  Expected  Observed RR
1 25 22 72 3.27
50 28 81 2.86
75 45 117 257
100 72 164 2.27
125 97 213 2.20
150 122 258 211
175 159 316 1.99
200 199 376 1.89
2 25 34 77 2.28
50 44 95 2.18
75 70 138 1.98
100 110 202 1.83
125 148 264 1.78
150 187 322 1.72
175 243 404 1.66
200 304 497 1.63
3 25 43 79 1.85
50 55 97 1.76
75 88 144 1.63
100 140 220 1.57
125 188 293 1.56
150 237 360 1.52
175 308 457 1.48
200 386 566 1.47
4 25 50 80 1.59
50 65 99 1.53
75 104 150 1.45
100 164 236 1.44
125 221 313 1.42
150 279 383 1.37
175 362 493 1.36
200 453 617 1.36

*Monte Carlo simulations performed in each analysis:10.000. \

Appendix Table 3. Description of the space-time cluster identified for the chikungunya epidemic in the north-central region of
Venezuela*

No. Day occurrence, Cluster Average distance Range of distance Velocity average, Velocity range,

Cluster ID cases first-last case duration, d from IC, m from IC, m m/day m/day
1 2 95-105 11 10132.0 10128-10136 102.0 97-107
2 4 77-105 29 7659.8 7636-7686 86.8 73-100
3 4 72-85 14 2556.0 2818-2613 32.3 30-36
4 3 72-94 23 2872.0 2857-2898 33.7 30-40
5 2 121-126 6 6685.5 6661-6710 54.0 53-55
7 3 0-25 26 31.7 0-95 1.3 0-4

8 2 125-135 11 2598.5 2598-2599 20.0 19-21
9 3 64-95 78 2553.7 2515-2585 333 27-34
10 5 71-99 29 2344.0 2299-2429 29.6 24-33
11 2 73-73 1 1857.0 1856-1858 25.0 25.0

12 2 61-61 1 3673.5 3673-3674 60.0 60.0

13 2 73-80 8 2550.0 2506-2594 33.4 32-34
14 4 79-107 29 2680.3 2647-2714 29.0 25-34
15 5 72-108 37 3463.0 3418-3508 43.4 32-51
16 3 43-57 15 3687.0 3680-3700 75.3 65-86
17 3 3-31 33 3015.3 3011-3020 45.3 39-50
18 2 91-99 9 3354.5 3315-3394 35.0 33-37
19 2 47-60 14 3305.0 3304-3306 62.5 55-70
20 3 63-78 16 3198.3 3192-3205 46.0 41-51
21 2 61-82 22 3531.5 3491-3571 50.5 44-57
23 2 66-66 1 3573.0 3571-3575 54.0 54.0

24 2 65-65 1 3684.0 3683-3685 57.0 57.0

25 9 59-72 14 3786.2 3734-3882 57.8 54-64
26 3 75-88 14 3967.0 3957-3967 53.0 45-53
27 12 69-77 9 4092.8 4008-4241 57.8 54-59
28 2 66-68 3 5608.5 5643-5574 83.5 83-84
29 3 0-66 67 6799.0 6194-6204 97.0 94-103
30 2 67-68 2 3617.0 3616-3618 53.5 53-54
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No. Day occurrence, Cluster Average distance Range of distance Velocity average, Velocity range,

Cluster ID cases first—last case duration, d from IC, m from IC, m m/day m/day
31 2 74-80 7 3970.0 3929-3997 51.5 49-54
32 2 16-19 4 3822.0 3820-3824 220.0 201-239
33 5 65-82 18 4311.7 4282-4344 59.8 53-66
34 2 67-72 6 4483.0 4471-4495 64.5 62-67
35 2 88-94 7 5555.0 5554-5556 61.0 59-63
36 3 89-109 21 6709.7 6694-6739 67.7 61-76
37 2 72-76 5 4601.0 4571-4631 62.0 61-63
38 3 86-88 3 4760.3 4752-4775 54.3 54-55
39 3 68-86 19 4940.3 4894-4998 62.3 57-72
40 2 76-76 1 4645.5 4623-4668 61.0 61.0
41 2 61-64 4 4938.0 4938-4964 77.0 77-81
42 2 50-63 14 5138.0 5138.0 103.0 82-103
44 2 103-107 5 5561.5 5518-5605 53.0 52-54
45 2 116-117 2 5564.5 5562-5567 48.0 48.0
46 2 119-121 3 5596.0 5536-5556 47.0 47.0
47 2 108-115 8 5750.5 5727-5774 51.5 50-53
48 2 92-101 10 6126.5 6126-6127 64.0 61-67
49 2 80-80 1 6356.0 6349-6363 79.5 79-80
50 2 76-76 1 6368.5 6368-6369 84.0 84.0
51 3 103-132 30 6501.6 6512-6479 56.0 49-63
52 2 85-85 1 6796.5 6191-6202 73.0 73.0
53 2 75-111 37 6382.5 6373-6392 71.0 57-85
54 2 99-103 5 7305.5 7279-7332 72.5 71-74
55 2 92-103 12 7734.5 7704-7765 79.5 84-75
56 2 60-74 15 7046.0 7011-7081 106.5 96-117
57 6 60-77 18 7341.8 72627428 108.3 96-122
58 2 81-83 3 7526.5 7495-7558 92.0 91-93
59 3 63-72 10 7598.6 7535-7661 112.3 106-120
60 2 76-76 1 8228.5 8221-8626 108.0 86-97
61 2 72-76 5 8396.0 8381-8411 1135 111-116
62 2 89-100 12 8647.5 8626-8669 91.5 86-97
63 2 86-86 1 8778.5 8774-8783 102.0 102.0
64 2 102-115 14 9355.0 9349-9361 86.5 81-92
65 2 76-76 1 8228.5 8221-8236 108.0 108.0
66 2 75-80 6 8406.0 8359-8453 108.5 106-111
67 2 80-80 1 8804.0 8783-8825 110.0 110.0
68 2 79-79 1 10419.5 10397-10442 132.0 132.0
69 2 83-84 2 10822.0 10819-10825 1295 129-130
70 3 70-85 16 10653.7 10603-10679 135.7 125-153
71 2 142-163 22 11749.5 11726-11776 77.5 72-83
72 5 69-99 31 7611.0 7599-7622 103.4 77-110
73 2 59-81 23 7943.0 7920-7966 116.5 98-135
74 3 70-92 23 12291.7 12224-12341 153.7 134-175
75 2 134-136 3 9903.5 9903-9904 73.5 73-74
76 2 65-79 15 7636.5 7630-7643 107.5 97-118
77 2 78-78 1 1651.5 1644-1659 21.0 21.0
78 3 129-133 5 5477.0 5477.0 41.7 42.0

*Results shown here describes the general clusters of transmission found by Knox analysis with the critical values set at 100mts as clustering
distance and 3 weeks as time window. Monte Carlo performed, 10.000.

Appendix Table 4. Linear distance between cases within the major spatiotemporal clusters

Cluster ID No. cases Average distance, m Stddev, m Maximum, m Minimum, m
Cluster 10 5 77.0 47.2 130.7 16.2
Cluster 14 4 130.7 27.3 150.4 92.1
Cluster 15 5 63.6 23.7 85.4 30.0
Cluster 02 4 38.2 16.4 54.6 219
Cluster 25 9 61.9 26.5 66.4 26.2
Cluster 27 12 81.6 19.2 216.0 8.0
Cluster 33 5 78.6 11 79.8 77.6
Cluster 33 4 85.6 26.5 105.0 55.4
Cluster 57 6 77.8 28.9 124.0 54.1
Cluster 72 5 56.7 39.1 93.7 10.3
Average 6 75.2 25.6 110.6 39.2
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Appendix Figure 1. Logistic fitted model for reported chikungunya cases during the epidemic of 2014 in
Carabobo State, Venezuela. Chikungunya cases are depicted by open black dots, red line depicts the

fitted curve (logistic model).
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Appendix Figure 2. Reproduction number of chikungunya fever in Carabobo State, Venezuela, during
2014. Blue bars show the epidemic curve; the cases are shown in a weekly interval. Solid black line
corresponds to the estimated Rt for the epidemic, dashed red line depicts the 95% CI, whereas green

dashed line depicts the threshold Rt = 1.
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Appendix Figure 3. Spatial prediction map for the ordinary kriging interpolation of number of days
elapsed between the appearance of a case in a specific locality and the IC obtained using the Gaussian

(A), spherical (B), and exponential (C) models. Surface maps showing the kriging standard errors for each
model in the right side of each map.
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Appendix Figure 4. Space—time output varying the time window from 1 to 4 weeks. In red, the space-

time clusters. Distance window was set at 100 m.
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Appendix Figure 5. Relative risk from the Knox test with alternative definitions of spatial and temporal

proximity.
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Appendix Figure 6. A) Geographic distribution of chikungunya reported cases in Carabobo state,
Venezuela. a) Red dots denote case location, black dashed lines (b, c, d) are the different panels division
(arbitrary) within Carabobo state selected to show in detail (zoom in) the general clusters of transmission.
B) Geographic distribution and significant space—time clustering of chikungunya reported cases. Zoom in
of the different cluster of transmission detected (including the IC), red dots denote case location, black
circles identify a significant space—time cluster and yellow lines shows the interaction between cases
(time—space link). The analysis was performed using 100 m as clustering distance and 3 weeks as time
window. Significance level for local clustering detection was of 0.05. C) Geographical distribution and
significant space-time clustering of chikungunya reported cases. Zoom in of the different cluster of
transmission detected (including IC and AC), red dots denote case location, black circles identify a
significant space-time cluster and yellow lines shows the interaction between cases (time-space link). The
analysis was performed using 100 m as clustering distance and 3 weeks as time window. Significance
level for local clustering detection was of 0.05. D) Geographic distribution and significant space—time
clustering of chikungunya reported cases. Zoom in of the different cluster of transmission detected
(including IC and AC), red dots denote case location, black circles identify a significant space—time cluster
and yellow lines shows the interaction between cases (time—space link). The analysis was performed
using 100 m as clustering distance and 3 weeks as time window. Significance level for local clustering

detection was of 0.05.
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Appendix Figure 7. Significant values of the exploratory IKT analysis. In red the significant (p value

<0.05) of space—time interactions within the specific space—time intervals.
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Appendix Figure 8. Values of relative risk for the exploratory IKT analysis. The colors in the heatmap

depict the range of values of RR (refer to the legend) within the specific space—time intervals.
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